Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Microbiol ; 13: 915202, 2022.
Article in English | MEDLINE | ID: covidwho-2114240

ABSTRACT

The ongoing COVID-19 pandemic continues to pose a need for new and efficient therapeutic strategies. We explored antisense therapy using oligonucleotides targeting the severe acute respiratory syndrome coronavirus (SARS-CoV-2) genome. We predicted in silico four antisense oligonucleotides (ASO gapmers with 100% PTO linkages and LNA modifications at their 5' and 3'ends) targeting viral regions ORF1a, ORF1b, N and the 5'UTR of the SARS-CoV-2 genome. Efficiency of ASOs was tested by transfection in human ACE2-expressing HEK-293T cells and monkey VeroE6/TMPRSS2 cells infected with SARS-CoV-2. The ORF1b-targeting ASO was the most efficient, with a 71% reduction in the number of viral genome copies. N- and 5'UTR-targeting ASOs also significantly reduced viral replication by 55 and 63%, respectively, compared to non-related control ASO (ASO-C). Viral titration revealed a significant decrease in SARS-CoV-2 multiplication both in culture media and in cells. These results show that anti-ORF1b ASO can specifically reduce SARS-CoV-2 genome replication in vitro in two different cell infection models. The present study presents proof-of concept of antisense oligonucleotide technology as a promising therapeutic strategy for COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL